Of The Muscles

Relax Your Mind

Relaxation Techniques

Get Instant Access

M uscles, with their tendons, are the instruments by which animal motion is performed. It will be our business to point out instances in which, and properties with respect to which, the disposition of these muscles is as strictly mechanical, as that of the wires and strings of a puppet.

I. We may observe, what I believe is universal, an exact relation between the joint and the muscles which move it. Whatever motion, the joint, by its mechanical construction, is capable of performing, that motion, the annexed muscles, by their position, are capable of producing. For example; if there be, as at the knee and elbow, a hinge joint, capable of motion only in the same plane, the leaders, as they are called, i. e. the muscular tendons, are placed in directions parallel to the bone, so as, by the contraction or relaxation of the muscles to which they belong, to produce that motion and no other. If these joints were capable of a freer motion, there are no muscles to produce it. Whereas at the shoulder and the hip, where the ball and socket joint allows by its construction of a rotatory or sweeping motion, tendons are placed in such a position, and pull in such a direction, as to produce the motion of which the joint admits. For instance, the sartorius* or taylor's muscle, rising from the spine, running diagonally across the thigh, and taking hold of the inside of the main bone of the leg a little below the knee, enables us, by its contraction, to throw one leg and thigh over the other; giving effect, at the same time, to the ball and socket joint at the hip, and the hinge joint at the knee. There is, as we have seen, a specific mechanism in the bones for the rotatory motions of the head and hands: there is, also, in the oblique direction of the muscles belonging to them, a specific provision for the putting of this mechanism of the bones into action. And mark the consent of uses. The oblique muscles would have been inefficient without the articulation: the articulation would have been lost, without the oblique muscles. It may be proper however to observe with respect to the head, although I think it does not vary the case, that its oblique motions and inclinations are often motions in a diagonal, produced by the joint action of muscles lying in straight directions. But, whether the pull be single or combined, the articulation is always such, as to be capable of obeying the action of the muscles. The oblique muscles attached to the head, are likewise so disposed, as to be capable of steadying the globe, as well as of moving it. The head of a new-born infant is often obliged to be filleted up. After death the head drops, and rolls in every direction. So that it is by the equilibre of the muscles, by the aid of a considerable and equipollent muscular force in constant exertion, that the head maintains its erect posture. The muscles here supply, what would otherwise be a great defect in the articulation: for the joint in the neck, although admirably adapted to the motion of the head, is insufficient for its support. It is not only by the means of a most curious structure of the bones that a man turns his head, but by virtue of an adjusted muscular power, that he even holds it up.

As another example of what we are illustrating, viz. conformity of use between the bones and the muscles, it has been observed of the different vertebre, that their processes are exactly proportioned to the quantity of motion which the other bones allow of, and which the respective muscles are capable of producing.

II. A muscle acts only by contraction. Its force is exerted in no other way. When the exertion ceases it relaxes itself, that is, it returns by relaxation to its former state; but without energy. This is the nature of the muscular fibre: and being so, it is evident that the reciprocal energetic motion of the limbs, by which we mean motion with force in opposite directions, can only be produced by the instrumentality of opposite or antagonist muscles; of flexors and extensors answering to each other. For instance, the biceps and brachieus internus* muscles placed in the front part of the upper arm, by their contraction, bend the elbow; and with such degree of force, as the case requires, or the strength admits of. The relaxation of these muscles, after the effort, would merely let the fore arm drop down. For the back stroke therefore; and that the arm may not only bend at the elbow, but also extend and straighten itself with force, other muscles, the longus and brevis brachieus externus, and the anconeus,* placed on the hinder part of the arm, by their contractile twitch fetch back the fore arm into a straight line with the cubit,* with no less force than that with which it was bent out of it. The same thing obtains in all the limbs, and in every moveable part of the body. A finger is not bent and straightened, without the contraction of two muscles taking place. It is evident therefore that the animal functions require that particular disposition of the muscles which we describe by the name of antagonist muscles. And they are accordingly so disposed. Every muscle is provided with an adversary. They act like two sawers in a pit by an opposite pull: and nothing surely can more strongly indicate design and attention to an end than their being thus stationed; than this collocation. The nature of the muscular fibre being what it is, the purposes of the animal could be answered by no other. And not only the capacity for motion, but the aspect and symmetry of the body is preserved by the muscles being marshalled according to this order, e. g. the mouth is held in the middle of the face, and its angles kept in a state of exact correspondency, by two muscles drawing against, and balancing, each other. In a hemiplegia, when the muscle on one side is weakened, the muscle on the other side draws the mouth awry.

III. Another property of the muscles, which could only be the result of care, is their being almost universally so disposed, as not to obstruct or interfere with one another's action. I know but one instance in which this impediment is perceived. We cannot easily swallow whilst we gape. This, I understand, is owing to the muscles employed in the act of deglutition* being so implicated with the muscles of the lower jaw, that, whilst these last are contracted, the former cannot act with freedom. The obstruction is, in this instance, attended with little inconveniency; but it shews what the effect is, where it does exist; and what loss of faculty there would be, if it were more frequent. Now when we reflect upon the number of muscles, not fewer than four hundred and forty-six in the human body,* known and named,1 how contiguous they lie to each other, in layers, as it were, over one another, crossing one another, sometimes embedded in one another, sometimes perforating one another, an arrangement, which leaves to each its liberty and its full play, must necessarily require meditation and counsel.

IV. The following is oftentimes the case with the muscles. Their action is wanted where their situation would be inconvenient. In which case the body of the muscle is placed in some commodious position at a distance, and made to communicate with the point of action, by slender strings or wires. If the muscles, which move the

fingers, had been placed in the palm or back of the hand, they would have swelled that part to an awkward and clumsy thickness. The beauty, the proportions, of the part, would have been destroyed. They are therefore disposed in the arm, and even up to the elbow; and act by long tendons, strapped down at the wrist, and passing under the ligament to the fingers, and to the joints of the singers, which they are severally to move. In like manner, the muscles which move the toes, and many of the joints of the foot, how gracefully are they disposed in the calf of the leg, instead of forming an unwieldy tumefaction in the foot itself? The observation may be repeated of the muscle which draws the nictitating membrane over the eye. Its office is in the front of the eye; but its body is lodged in the back part of the globe, where it lies safe, and where it incumbers nothing.

V. The great mechanical variety in the figure of the muscles may be thus stated. It appears to be a fixed law, that the contraction of a muscle shall be towards its centre.* Therefore the subject for mechanism on each occasion is, so to modify the figure, and adjust the position, of the muscle, as to produce the motion required, agreeably with this law. This can only be done by giving to different muscles, a diversity of configuration, suited to their several offices, and to their situation with respect to the work which they have to perform. On which account we find them under a multiplicity of forms, and attitudes; sometimes with double, sometimes with treble tendons, sometimes with none; sometimes one tendon to several muscles, at other times one muscle to several tendons. The shape of the organ is susceptible of an incalculable variety, whilst the original property of the muscle, the law and line of its contraction, remains the same; and is simple. Herein the muscular system may be said to bear a perfect resemblance to our works of art. An artist does not alter the native quality of his materials, or their laws of action. He takes these as he finds them. His skill and ingenuity are employed in turning them, such as they are, to his account, by giving to the parts of his machine a form and relation, in which these unalterable properties may operate to the production of the effects intended.

VI. The ejaculations can never too often be repeated, How many things must go right for us to be an hour at ease! How many more, to be vigorous and active! Yet vigor and activity are, in a vast plurality of instances, preserved in human bodies, notwithstanding that they depend upon so great a number of instruments of motion, and notwithstanding that the defect or disorder sometimes of a very small instrument, of a single pair, for instance, out of the four hundred and forty-six muscles which are employed, may be attended with grievous inconveniency. There is piety and good sense in the following observation taken out of the Religious Philosopher. 'With much compassion,' says this writer,* 'as well as astonishment at the goodness of our loving Creator, have I considered the sad state of a certain gentleman, who, as to the rest, was in pretty good health, but only wanted the use of these two little muscles that serve to lift up the eyelids, and so had almost lost the use of his sight, being forced, as long as this defect lasted, to shove up his eyelids every moment with his own hands!' In general we may remark how little those, who enjoy the perfect use of their organs, know the comprehensiveness of the blessing, the variety of their obligation. They perceive a result, but they think little of the multitude of concurrences and rectitudes which go to form it.

B eside these observations, which belong to the muscular organ as such, we may notice some advantages of structure which are more conspicuous in muscles of a certain class or description than in others. Thus,

I. The variety, quickness, and precision, of which muscular motion is capable, are seen, I think, in no part so remarkably as in the tongue. It is worth any man's while to watch the agility of his tongue; the wonderful promptitude with which it executes changes of position, and the perfect exactness. Each syllable of articulated sound requires for its utterance a specific action of the tongue, and of the parts adjacent to it. The disposition and configuration of the mouth appertaining to every letter and word, is not only peculiar, but, if nicely and accurately attended to, perceptible to the fight; insomuch that curious persons have availed themselves of this circumstance to teach the deaf to speak, and to understand what is said by others. In the same person, and after his habit of speaking is formed, one, and only one, position of the parts, will produce a given articulate sound correctly. How instantaneously are these positions assumed and dismissed; how numerous are the permutations, how various, yet how infallible? Arbitrary and antic variety is not the thing we admire; but variety obeying a rule, conducing to an effect, and commensurate with exigencies infinitely diversified. I believe also that the anatomy of the tongue corresponds with these observations upon its activity.

The muscles of the tongue are so numerous, and so implicated with one another, that they cannot be traced by the nicest dissection; nevertheless, which is a great perfection of the organ, neither the number, nor the complexity, nor what might seem to be, the entanglement of its fibres, in any wise impede its motion, or render the determination or success of its efforts uncertain.

I here intreat the reader's permission to step a little out of my way to consider the parts of the mouth in some of their other properties. It has been said, and that by an eminent physiologist, that, whenever nature attempts to work two or more purposes by one instrument, she does both or all imperfectly. Is this true of the tongue regarded as an instrument of speech, and of taste; or regarded as an instrument of speech, of taste, and of deglutition? So much otherwise, that many persons, that is to say, nine hundred and ninety-nine persons out of a thousand,* by the instrumentality of this one organ, talk, and taste, and swallow, very well. In fact the constant warmth and moisture of the tongue, the thinness of the skin, the papilte upon its surface, qualify this organ for its office of tasting, as much as its inextricable multiplicity of fibres do for the rapid movements which are necessary to speech. Animals which feed upon grass, have their tongues covered with a perforated skin, so as to admit the dissolved food to the papilte underneath, which, in the mean time, remain defended from the rough action of the unbruised spicule.

There are brought together within the cavity of the mouth more distinct uses, and parts executing more distinct offices, than I think can be found lying so near to one another, or within the same compass, in any other portion of the body: viz. teeth of different shape, first for cutting, secondly for grinding: muscles, most artificially disposed for carrying on the compound motion of the lower jaw, half lateral and half vertical, by which the mill is worked: fountains of saliva, springing up in different parts of the cavity for the moistening of the food, whilst the mastication is going on: glands, to feed the fountains: a muscular constriction of a very peculiar kind in the back part of the cavity, for the guiding of the prepared aliment into its passage towards the stomach, and in many cases for carrying it along that passage: for, although we may imagine this to be done simply by the weight of the food itself, it in truth is not so, even in the upright posture of the human neck; and most evidently is not the case with quadrupeds, with a horse for instance, in which, when pasturing, the food is thrust upward by muscular strength, instead of descending of its own accord.

In the mean time, and within the same cavity, is going on another business, altogether different from what is here described, that of respiration and speech. In addition therefore to all that has been mentioned, we have a passage opened, from this cavity to the lungs, for the admission of air, exclusively of every other substance: we have muscles, some in the larynx, and without number in the tongue, for the purpose of modulating that air in its passage, with a variety, a compass, and precision, of which no other musical instrument is capable. And, lastly, which in my opinion crowns the whole as a piece of machinery, we have a specific contrivance for dividing the pneumatic part from the mechanical,* and for preventing one set of actions interfering with the other. Where various functions are united, the difficulty is to guard against the inconveniences of a too great complexity. In no apparatus put together by art, and for the purposes of art, do I know such multifarious uses so aptly combined as in the natural organization of the human mouth; or where the structure, compared with the uses, is so simple. The mouth, with all these intentions to serve, is a single cavity; is one machine; with its parts neither crowded nor confused, and each unembarrassed by the rest: each at least at liberty in a degree sufficient for the end to be attained. If we cannot eat and sing at the same moment, we can eat one moment and sing the next; the respiration proceeding freely all the while.

There is one case however of this double office, and that of the earliest necessity, which the mouth alone could not perform; and that is, carrying on together the two actions of sucking and breathing. Another rout therefore is opened for the air, namely, through the nose, which lets the breath pass backward and forward, whilst the lips, in the act of sucking, are necessarily shut close upon the body, from which the nutriment is drawn. This is a circumstance, which always appeared to me worthy of notice. The nose would have been necessary, although it had not been the organ of smelling. The making it the seat of a sense, was superadding a new use to a part already wanted: was taking a wise advantage of an antecedent and a constitutional necessity.

But to return to that, which is the proper subject of the present section, the celerity and precision of muscular motion. These qualities may be particularly observed in the execution of many species of instrumental music, in which the changes produced by the hand of the musician are exceedingly rapid; are exactly measured, even when most minute; and display, on the part of the muscles, an obedience of action, alike wonderful for its quickness and its correctness.

Or let a person only observe his own hand whilst he is writing; the number of muscles, which are brought to bear upon the pen; how the joint and adjusted operation of several tendons is concerned in every stroke, yet that five hundred such strokes are drawn in a minute. Not a letter can be turned without more than one or two or three tendinous contractions, definite, both as to the choice of the tendon, and as to the space through which the contraction moves; yet how currently does the work proceed? and, when we look at it, how faithful have the muscles been to their duty, how true to the order which endeavour or habit hath inculcated? For let it be remembered, that, whilst a man's hand writing is the same, an exactitude of order is preserved, whether he write well or ill. These two instances of music and writing, shew not only the quickness and precision of muscular action, but the docility.

II. Regarding the particular configuration of muscles, sphincter or circular muscles appear to me admirable pieces of mechanism. It is the muscular power most happily applied; the same quality of the muscular substance, but under a new modification. The circular disposition of the fibres is strictly mechanical; but, though the most mechanical, is not the only thing in sphincters which deserves our notice. The regulated degree of contractile force with which they are endowed, sufficient for retention, yet vincible when requisite; together with their ordinary state of actual contraction, by means of which their dependence upon the will is not constant but occasional, gives to them a constitution of which the conveniency is inestimable. This their semi-voluntary character, is exactly such as suits with the wants and functions of the animal.

III. We may also, upon the subject of muscles, observe, that many of our most important actions are achieved by the combined help of different muscles. Frequently, a diagonal motion is produced, by the contraction of tendons, pulling in the direction of the sides of the parallelogram. This is the case, as hath been already noticed, with some of the oblique nutations of the head. Sometimes the number of cooperating muscles is very great. Dr Nieuentyt, in the Leipsic Transactions,* reckons up a hundred muscles that are employed every time we breathe: yet we take in, or let out, our breath, without reflecting what a work is thereby performed; what an apparatus is laid in of instruments for the service, and how many such contribute their assistance to the effect. Breathing with ease is a blessing of every moment: yet, of all others, it is that which we possess with the least consciousness. A man in an asthma is the only man who knows how to estimate it.

IV. Mr Home has observed,1 that the most important and the most delicate actions are performed in the body by the smallest muscles: and he mentions, as his examples, the muscles which have been discovered in the iris of the eye and the drum of the ear. The tenuity of these muscles is astonishing. They are microscopic hairs; must be magnified to be visible; yet are they real effective muscles; and not only such, but the grandest and most precious of our faculties, sight and hearing, depend upon their health and action.

V. The muscles act in the limbs with what is called a mechanical disadvantage. The muscle at the shoulder, by which the arm is raised, is fixed nearly in the same manner, as the load is fixed upon a steelyard,* within a few decimals, we will say, of an inch, from the centre upon which the steelyard turns. In this situation, we find that a very heavy draught is no more than sufficient to countervail the force of a small lead plummet, placed upon the long arm of the steelyard, at the distance of perhaps fifteen or twenty inches from the centre, and on the other side of it. And this is the disadvantage which is meant. And an absolute disadvantage, no doubt, it would be, if the object were to spare the force of muscular contraction. But observe how conducive is this constitution to animal conveniency. Mechanism has always in view one or other of these two purposes; either to move a great weight slowly, and through a small space; or to move a light weight rapidly, through a considerable sweep. For the former of these purposes, a different species of lever,* and a different collocation of the muscles, might be better than the present: but for the second, the present structure is the true one. Now so it happens, that the second, and not the first, is that which the occasions of animal

life principally call for. In what concerns the human body, it is of much more consequence to any man to be able to carry his hand to his head with due expedition, than it would be to have the power of raising from the ground a heavier load (of two or three more hundred weight, we will suppose,) than he can lift at present. This last is a faculty, which, upon some extraordinary occasions, he may desire to posses; but the other is what he wants and uses every hour or minute. In like manner, a husbandman* or a gardener will do more execution, by being able to carry his scythe, his rake, or his flail,* with a sufficient dispatch through a sufficient space, than if, with greater strength, his motions were proportionably more confined and slow. It is the same with a mechanic in the use of his tools. It is the same also with other animals in the use of their limbs. In general, the vivacity of their motions would be ill exchanged for greater force under a clumsier structure.

We have offered our observations upon the structure of muscles in general; we have also noticed certain species of muscles; but there are also single muscles, which bear marks of mechanical contrivance, appropriate as well as particular. Out of many instances of this kind we select the following.

I. Of muscular actions, even of those which are well understood, some of the most curious are incapable of popular explanation; at least without the aid of plates and figures. This is in a great measure the case, with a very familiar, but, at the same time, a very complicated motion, that of the lower jaw; and with the muscular structure by which it is produced. One of the muscles concerned, may, however, be described in such a manner, as to be, I think, sufficiently comprehended for our present purpose. The problem is to pull the lower jaw down. The obvious method should seem to be, to place a straight muscle, viz. to fix a string from the chin to the breast, the contraction of which would open the mouth, and produce the motion required at once. But it is evident that the form and liberty of the neck forbid a muscle being laid in such a position; and that, consistently with the preservation of this form, the motion, which we want, must be effectuated, by some muscular mechanism disposed further back in the jaw. The mechanism adopted is as follows. A certain muscle called the digastric* rises on the side of the face, considerably above the insertion of the lower jaw; and comes down, being converted in its progress into a round tendon. Now it is evident, that the tendon, whilst it pursues a direction descending towards the jaw, must, by its contraction, pull the jaw up, instead of down. What then was to be done? This, we find, is done. The descending tendon, when it is got low enough, is passed through a loop, or ring, or pulley, in the os hyoides, and then made to ascend; and, having thus changed its line of direction, is inserted into the inner part of the chin: by which device, viz. the turn at the loop, the action of the muscle (which in all muscles is contraction) that before would have pulled the jaw up, now as necessarily draws it down. 'The mouth,' saith Heister, is opened by means of this trochlea in a most wonderful and elegant manner.'

II. What contrivance can be more mechanical than the following, viz. a slit in one tendon to let another tendon pass through it? This structure is found in the tendons which move the toes and fingers. The long tendon, as it is called, in the foot, which bends the first joint of the toe, passes through the short tendon which bends the second joint; which course allows to the sinew more liberty, and a more commodious action than it would otherwise have been capable of exerting.1 There is nothing, I believe, in a silk or cotton mill; in the belts, or straps, or ropes, by which motion is communicated from one part of the machine to another, that is more artificial, or more evidently so, than this perforation.

III. The next circumstance which I shall mention, under this head of muscular arrangement, is so decisive a mark of intention, that it always appeared to me, to supersede, in some measure, the necessity of seeking for any other observation upon the subject: and that circumstance is, the tendons, which pass from the leg to the foot, being bound down by a ligament at the ancle. The foot is placed at a considerable angle with the leg. It is manifest, therefore, that flexible strings, passing along the interior of the angle, if left to themselves, would, when stretched, start from it. The obvious pre-ventative is to tie them down. And this is done in fact. Across the instep, or rather just above it, the anatomist finds a strong ligament, under which the tendons pass to the foot. The effect of the ligament as a bandage, can be made evident to the senses; for, if it be cut, the tendons start up. The simplicity, yet the clearness of this contrivance, its exact resemblance to established resources of art, place it

amongst the most indubitable manifestations of design with which we are acquainted.

There is also a further use to be made of the present example, and that is, as it precisely contradicts the opinion, that the parts of animals may have been all formed by what is called appetency, i.e. endeavour, perpetuated, and imperceptibly working its effect, through an incalculable series of generations.* We have here no endeavour, but the reverse of it; a constant renitency* and reluctance. The endeavour is all the other way. The pressure of the ligament constrains the tendons; the tendons react upon the pressure of the ligament. It is impossible that the ligament should ever have been generated by the exercise of the tendon, or in the course of that exercise, forasmuch as the force of the tendon perpendicularly resists the fibre which confines it, and is constantly endeavouring, not to form, but to rupture and displace, the threads, of which the ligament is composed.

Keill has reckoned up, in the human body, four hundred and forty-six muscles, dissectible and describable; and hath assigned an use to every one of the number. This cannot be all imagination.

Bishop Wilkins* hath observed from Galen,* that there are, at least, ten several qualifications to be attended to in each particular muscle, viz. its proper figure, its just magnitude, its fulcrum, its point of action supposing the figure to be fixed, its collocation with respect to its two ends the upper and the lower, the place, the position of the whole muscle, the introduction into it of nerves, arteries, veins. How are things, including so many adjustments, to be made; or, when made, how are they to be put together, without intelligence?

I have sometimes wondered, why we are not struck with mechanism in animal bodies, as readily and as strongly as we are struck with it, at first sight, in a watch or a mill.* One reason of the difference may be, that animal bodies are, in a great measure, made up of soft, flabby, substances, such as muscles and membranes; whereas we have been accustomed to trace mechanism in sharp lines, in the configuration of hard materials, in the moulding, chiseling, and filing into shapes, such articles as metals or wood. There is something therefore of habit in the case: but it is sufficiently evident, that there can be no proper reason for any distinction of the sort. Mechanism may be displayed in the one kind of substance, as well as in the other.

Although the few instances we have selected, even as they stand in our description, are nothing short perhaps of logical proofs* of design, yet it must not be forgotten, that, in every part of anatomy, description is a poor substitute for inspection. It was well said by an able anatomist,1* and said in reference to the very part of the subject which we have been treating of, 'Imperfecta hœc musculorum descriptio, non minùs arida est legentibus, quàm inspectantibus fue-rit jucunda eorundem prœparatio. Elegantissima enim mechanicês artificia, creberrimè in illis obvia, verbis nonnisi obscurè exprimun-tur; carnium autem ductu, tendinum colore, infertionum propor-tione, et trochlearium distributione, oculis exposita, omnem superant admirationem.'*

Was this article helpful?

0 0
Relaxation Audio Sounds Babbling Brook

Relaxation Audio Sounds Babbling Brook

This is an audio all about guiding you to relaxation. This is a Relaxation Audio Sounds with sounds from the Babbling Brooks.

Get My Free MP3 Audio


Post a comment