Synthesized Protein

THE MILLER EXPERIMENTS—In 1953, a graduate biochemistry student (*Stanley Miller) sparked a non-oxygen mixture of gases for a week and produced some microscopic traces of non-living amino acids. We earlier discussed this in some detail in chapter 7, The Primitive Environment (which included a sketch of the complicated apparatus he used); this showed that * Stanley's experiment demonstrated that, if by any means amino acids could be produced, they would be a left-handed and right-handed mixture—and therefore unable to be used in living tissue.

"Amino acids synthesized in the laboratory are a mixture of the right- and left-handed forms."—*Harold Blum, Time's Arrow and Evolution (1968), p. 159.

Even if a spark could anciently have turned some chemicals into amino acids, the presence of the right-handed ones would clog the body machinery and kill any life-form they were in.

(1) There are 20 amino acids. (2) There are 300 amino acids in a specialized sequence in each medium protein. (3) There are billions upon billions of possible combinations! (4) The right combination from among the 20 amino acids would have to be brought together in the right se-quence—in order to make one useable protein properly.

(5) In addition to this, the ultra-complicated DNA strands would have to be formed, along with complex enzymes, and more and more, and still more.

IMPOSSIBLE ODDS—What are the chances of accomplishing all the above—and thus making a living creature out of protein manufactured by chance from dust, water, and sparks? Not one chance in billions. It cannot happen.

Evolutionists speak of "probabilities" as though they were "possibilities," if given enough odds. But reality is different than their make-believe numbers.

There are odds against your being able to throw a rock with your arm—and land it on the other side of the moon. The chances that you could do it are about as likely as this imagined animal of the evolutionists, which makes itself out of nothing and then evolves into everybody else.

A mathematician would be able to figure the odds of doing it as a scientific notation with 50 or so zeros after it, but that does not mean that you could really throw a rock to the moon! Such odds are not really "probabilities," they are "impossibilities!"

The chances of getting accidentally synthesized left amino acids for one small protein molecule is one chance in 10210. That is a numeral with 210 zeros after it! The number is so vast as to be totally out of the question.

Here are some other big numbers to help you grasp the utter immensity of such gigantic numbers: Ten billion years is 1018 seconds. The earth weighs 1026 ounces. From one side to the other, the universe has a diameter of 1028 inches. There are 1080 elementary particles in the universe (subatomic particles: electrons, protons, neutrons, etc.). Compare those enormously large numbers with the inconceivably larger numbers required for a chance formulation of the right mixture of amino acids, proteins, and all the rest out of totally random chance combined with raw dirt, water, and so forth.

How long would it take to walk across the 1028 inches from one side of the universe to the other side? Well, after you had done it, you would need to do it billions of times more before you would even have time to try all the possible chance combinations of putting together just ONE properly sequenced left-only amino acid protein in the right order.

After * Miller's amino acid experiment, researchers later tried to synthesize proteins. The only way they could do it was with actual amino acids from living tissue! What had they accomplished? Nothing, absolutely nothing. But this mattered not to the media; soon newspaper headlines shouted, "SCIENTISTS MAKE PROTEIN!"

"The apparatus must consist of a series of proteins as well as nucleic acids with the 'right' sequences."—*R. W. Kaplan, "The Problem of Chance in Formation of Protobionts by Random Aggregation of Macromol-ecules, " in Chemical Evolution, p. 320.

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment