Additional Mathematical Impossibilities

ALL BY CHANCE—Earlier in this chapter, we said that the possible combinations of DNA were the numeral 4 followed by a thousand zeros. That tells us about DNA combinations; what about protein combinations?

The possible arrangements of the 20 different amino acids are 2,500,000,000,000,000,000. If evolutionary theory be true, every protein arrangement in a lifeform had to be worked out by chance until it worked right—first one combination and then another until one was found that worked right. But by then the organism would have been long dead, if it ever had been alive!

Once the chance arrangements had hit upon the right combination of amino acids for ONE protein—the same formula would have to somehow be repeated for the other 19 proteins. And then it would somehow have to be correctly transmitted to offspring!

THE STREAM OF LIFE—The primary protein in your red blood cells has 574 amino acids in it. Until that formula is first produced correctly by chance, and then always passed on correctly, your ancestors could not live a minute, much less survive and reproduce.

You have billions upon billions upon billions of red blood cells ("RBCs," the scientists call them) in your body. This is what makes your blood red. Each red blood cell has about 280 million molecules of hemoglobin, and it would take about 1000 red blood cells to cover the pe riod at the end of this sentence. (Hemoglobin is the iron-carrying protein material in RBCs, which carries oxygen from the lungs to the tissues, and carbon dioxide from the tissues to the lungs.) Both in complexity and in enormous quantity, your red blood cells are unusual. Several large books could be filled with facts about your red blood cells.

MAKING PROTEIN BY CHANCE—The probability of forming 124 specifically sequenced proteins of 400 amino acids each by chance is 1 x 1064489. THAT is a BIG

number! If we put a thousand zeros on each page, it would take a 64-page booklet just to write the number!

The probability of those 124 specifically sequenced proteins, consisting of 400 all-left-amino acids each, being formed by chance, if EVERY molecule in all the oceans of 1031 planet earths was an amino acid, and these kept linking up in sets of 124 proteins EVERY second for 10 billion years would be 1 x 1078436 And THAT is another BIG number! That is one followed by 78,436 zeros!

As mentioned earlier, such "probabilities" are "impossibilities." They are fun for math games, but nothing more. They have nothing to do with reality. Yet such odds would have to be worked out in order to produce just 124 proteins! Without success in such odds as these, multiplied a million-fold, evolution would be totally impossible.

Throughout this and the previous chapter, we have only discussed the basics at the bottom of the ladder of evolution. We have, as it were, only considered the first few instants of time. But what about all the development after that?

More total impossibilities.

ENZYMES—* Fred Hoyle wrote in New Scientist that 2000 different and very complex enzymes are required for a living organism to exist. And then he added that random shuffling processes could not form a single one of these in even 20 billion years! He then added this: "I don't know how long it is going to be before as tronomers generally recognize that the arrangement of not even one among the many thousands of biopolymers [enzymes, proteins, hormones, etc.] on which life depends could have been arrived at by natural processes here on the earth.

"Astronomers will have a little difficulty in understanding this because they will be assured by biologists that it is not so; the biologists having been assured in their turn by others that it is not so. The 'others' are a group of persons [the evolutionary theoreticians] who believe, quite openly, in mathematical miracles.

"They advocate the belief that, tucked away in nature outside of normal physics, there is a law which performs miracles (provided the miracles are in the aid of biology). This curious situation sits oddly on a profession that for long has been dedicated to coming up with logical explanations . . The modern miracle workers are always found to be living in the twilight fringes of [the two laws of] thermodynamics."—*FredHoyle, "The Big Bang in Astronomy," in New Scientist, November 19, 1981, pp. 521-527.

*Taylor says that proteins, DNA, and enzymes—all of which are very complicated—would all be required as soon as a new creature was made by evolution.

"The fundamental objection to all these [evolutionary] theories is that they involve raising oneself by one's own bootstraps. You cannot make proteins without DNA, but you cannot make DNA without enzymes, which are proteins. It is a chicken and egg situation. That a suitable enzyme should have cropped up by chance, even in a long period, is implausible, considering the complexity of such molecules. And there cannot have been a long time [in which to do it]."—*G.R. Taylor, Great Evolution Mystery (1983), p. 201.

Enzyme systems do not work at all in the body— until they are all there.

"Dixon [a leading enzymologist] confesses that he cannot see how such a system could ever have originated spontaneously. The main difficulty is that an enzyme system does not work at all until it is complete, or nearly so. Another problem is the question of how enzymes appear without pre-existing enzymes to make them. 'The association between enzymes and life,' Dixon writes, 'is so intimate that the problem of the origin of life itself is largely that of the origin of enzymes.' "— *Michael Pitman, Adam and Evolution (1984), pp. 144-145.

DIXON-WEBB CALCULATION—In 1964 *Malcolm Dixon and *Edwin Webb, on page 667 of their standard reference work, Enzymes, mentioned to fellow scientists that in order to get the needed amino acids in close enough proximity to form a single protein molecule, a total volume of amino-acid solution equal to 10— times the volume of our earth would be needed! That would be 1 with 50 zeros after it multiplied by the contents of a mixing bowl. And the bowl would be so large that planet earth would be in it!

After using the above method to obtain ONE protein molecule, what would it take to produce ONE hemoglobin (blood) molecule which contains 574 specifically coded amino acids? On page 279 of their Introduction to Protein Chemistry, *S.W. Fox and *J.F. Foster tell how to do it:

First, large amounts of random amounts of all 20 basic types of protein molecules would be needed. In order to succeed at this, enough of the random protein molecules would be needed to fill a volume 10512 TIMES the volume of our entire known universe! And all of that space would be packed in solid with protein molecules. In addition, all of them would have to contain only left-handed amino acids (which only could occur 50 percent of the time in synthetic laboratory production).

Then and only then could random chance produce just the right combination for ONE hemoglobin molecule, with the proper sequence of 574 left-handed amino acids!

Yet there are also thousands of other types of protein molecules in every living cell, and even if all of them could be assembled by chance,—the cell would still not be alive.

BEYOND DNA AND PROTEIN—We have focused our attention on DNA and protein sequence in this chapter. Just for a moment, let us look beyond DNA and protein to a few of the more complicated organs in the human body. As we do so, the requirements which randomness would have to hurdle become truly fabulous. Consider the human brain, with its ten billion integrated cells in the cerebral cortex. How could all that come about by chance? Ask an expert on ductless glands to explain hormone production to you. Your head will swim. Gaze into the human eye and view how it is constructed, how it works. You who would cling to evolution as a theory that is workable give up! give up! There is no chance! Evolution is impossible!

COMPUTER SIMULATION—Prior to the late 1940s, men had to work out their various evolutionary theories with paper and pencil. But then advanced computers were invented. This changed the whole picture. By the 1970s, it had become clear that the "long ages" theories just did not work out. Computer calculations have established the fact that, regardless of how much time was allotted for the task,—evolution could not produce life-forms!

Evolutionists can no longer glibly say, "Given enough time and given enough chance, living creatures could arise out of seawater and lightning, and pelicans could change themselves into elephants." (Unfortunately, evolutionists still say such things, because the ignorant public does not know the facts in this book.)

But computer scientists can now feed all the factors into a large computer—and get fairly rapid answers. Within a dramatically short time they can find out whether evolution is possible after all!

Unfortunately, the evolutionists prefer to stay away from such computer simulations; they are afraid to face the facts. Instead they spend their time discussing their dreamy ideas with one another and writing articles about their theories in scientific journals.

A computer scientist who spoke at a special biology symposium in Philadelphia in 1967, when computers were not as powerful as they are today, laid out the facts this way:

"Nowadays computers are operating within a range which is not entirely incommensurate with that dealt with in actual evolution theories. If a species breeds once a year, the number of cycles in a million years is about the same as that which one would obtain in a ten-day computation which iterates a program whose duration is a hundredth of a second . . Now we have less excuse for explaining away difficulties [via evolutionary theory] by invoking the unobservable effect of astronomical [enormously large] numbers of small variations."—*M.P. Schutzenberger, Mathematical Challenges to the Neo-DarwinianInterpretation of Evolution (1967), pp. 73-75 (an address given at the Wistar Institute of Anatomy and Biology Symposium).

* Schutzenberger than turned his attention to the key point that scientists admit to be the only real basis of evolution: gradual improvements in the genetic code through beneficial mutations, resulting in new and changed species:

"We believe that it is not conceivable. In fact, if we try to simulate such a situation by making changes randomly at the typographic level—by letters or by blocks, the size of the unit need not matter—on computer programs, we find that we have no chance (i.e., less than 1/ 101000) even to see what the modified program would compute; it just jams!'

"Further, there is no chance (less than 1/101000) to see this mechanism (this single changed characteristic in the DNA) appear spontaneously and, if it did, even less [chance] for it to remain!

"We believe that there is a considerable gap in the neo-Darwinian theory of evolution, and we believe this gap to be of such a nature that it cannot be bridged within the current conception of biology."—*Ibid.

There is a one in chance that just one mu tation could be beneficial and improve DNA. Now 1/ 101000is one with a thousand zeros after it! In contrast, one chance in a million only involves six zeros! Compare it with the almost impossible likelihood of your winning a major multimillion-dollar state lottery in the United States: That figure has been computed, and is only a relatively "tiny" number of six with six zeros after it. Evolution requires probabilities which are totally out of the realm of reality.

THE DNA LANGUAGE—Another researcher, *M. Eden, in attendance at the same Wistar Institute, said that the code within the DNA molecule is actually in a structured form, like letters and words in a language. Like them, the DNA code is structured in a certain sequence, and only because of the sequence can the code have meaning.

*Eden then goes on and explains that DNA, like other languages, cannot be tinkered with by random variational changes; if that is done, the result will always be confusion!

"No currently existing formal language can tolerate random changes in the symbol sequences which express its sentences. Meaning is invariably destroyed."—*M. Eden, "Inadequacies of Neo-Darwinian Evolution as a Scientific Theory, " in op. cit., p. 11.

And yet evolutionary theory teaches that DNA and all life appeared by chance, and then evolved through random changes within the DNA!

(For more information on those special evolutionary conferences, see chapter 1. History of Evolutionary Theory.)

THE MORE TIME, THE LESS SUCCESS—Evolutionists imagine that time could solve the problem: Given enough time, the impossible could become possible. But time works directly against success. Here is why:

"Time is no help. Biomolecules outside a living system tend to degrade with time, not build up. In most cases, a few days is all they would last. Time decomposes complex systems. If a large 'word' (a protein) or even a paragraph is generated by chance, time will operate to degrade it. The more time you allow, the less chance there is that fragmentary 'sense' will survive the chemical maelstrom of matter."—*Michael Pitman, Adam and Evolution (1984), p. 233.

ALL AT ONCE—Everything had to come together all at once. Within a few minutes, all the various parts of the living organism had to make themselves out of sloshing, muddy water.

"However, conventional Darwinian theory rationalizes most adaptations by assuming that sufficient time has transpired during evolution for natural selection to provide us with all the biological adaptations we see on earth today, but in reality the adaptive process must by necessity occur rather quickly (in one or at the most two breeding generations)."—*E. Steele, Somatic Selection and Adaptive Evolution (2nd ed. 1981), p. 3.

"So the simultaneous formation of two or more molecules of any given enzyme purely by chance is fantastically improbable."—*W. Thorpe, "Reductionism in Biology, " in Studies in the Philosophy of Biology (1974), p. 117.

"From the probability standpoint, the ordering of the present environment into a single amino acid molecule would be utterly improbable in all the time and space available for the origin of terrestrial life."—*Homer Jacobson, "Information, Reproduction and the Origin of Life, " American Scientist, January 1955, p. 125.

"To form a polypeptide chain of a protein containing one hundred amino acids represents a choice of one out of 1O130 possibilities. Here again, there is no evidence suggesting that one sequence is more stable than another, energetically. The total number of hydrogen atoms in the universe is only 1078. That the probability of forming one of these polypeptide chains by change is unimaginably small; within the boundary of conditions of time and space we are considering it is effectively zero."—*E. Ambrose, The Nature and Origin of the Biological World (1982), p. 135.

"Directions for the reproduction of plans, for energy and the extraction of parts from the current environment, for the growth sequence, and for the effector mechanism translating instruction into growth—all had to be simultaneously present at that moment. This combination of events has seemed an incredibly unlikely happenstance, and has often been ascribed to divine intervention."—*Homer Jacobson, "Information, Reproduction and the Origin of Life," American Scientist, January 1955, p. 121.

BACTERIA DISPROVE EVOLUTION—Let us go beyond DNA molecules and pieces of protein, and consider one of the simplest of life-forms. Scientists have studied in detail the bacterium, Escherichia coli. These bacteria are commonly found in the large bowel.

Under favorable conditions bacterial cells can divide every 20 minutes. Then their offspring immediately begin reproducing. Theoretically, one cell can produce 1020 cells in one day! For over a century researchers have studied E-coli bacteria. All that time those bacteria have reproduced as much as people could in millions of years. Yet never has one bacterium been found to change into anything else. And those little creatures do not divide simply. The single chromosome replicates (makes a copy of itself), and then splits in two. Then each daughter cell splits in two, forming the various cells in the bacterium. These tiny bacteria can divide either sexually or asexually.

Escherichia coli has about 5000 genes in its single chromosome strand. This is the equivalent of a million three-letter codons. Yet this tiny bacterium is one of the "simplest" living creatures that exists.

Please, do not underestimate the complexity of this, a creature with only ONE chromosome: First, that one chromosome is a combination lock with a million units, arranged in a definite sequence. Second, each unit is made up of three sub-units (A-C-C, G-T-A, etc.). Third, the sub-units are combined from four different chemical building blocks: A, G, C, and T. What are the possible number of combinations for that one chromosome? Get a sheet of paper and figure that one out for yourself.

FRAME SHIFTS—Then scientists discovered an even "simpler" creature that lives in the human bowel. It is called the theta-x-174, and is a tiny virus. It is so small, that it does not contain enough DNA information to produce the proteins in its membrane! How then can it do it? How can it produce proteins without enough DNA code to produce proteins! Scientists were totally baffled upon making this discovery. Then they discovered the high-tech secret: The answer is but another example of a super-intelligent Creator. The researchers found that this tiny, mindless creature routinely codes for that protein thousands of times a day—and does it by "frame shift."

To try to describe it in simple words, a gene is read off from the first DNA base to produce a protein. Then the same message is read again—but this time omitting the first base and starting with the second. This produces a different protein. And on and on it goes. Try writing messages in this manner, and you will begin to see how utterly complicated it is: "Try writing messages / writing messages in/messages in this/in this manner." That is how the simplest of viruses uses its DNA coding to make its protein!

Does someone think that the virus was smart enough to figure out that complicated procedure with its own brains? Or will someone suggest that it all "just happened by chance?"

With all this in mind, *Wally Gilbert, a Nobel prize winning molecular biologist, said that bacteria and viruses have a more complicated DNA code-reading sys tem than the "higher forms of life."

THE CENTRAL DOGMA—*Francis Crick, the co-discoverer of the structure of DNA, prepared a genetic principle which he entitled, "The Central Dogma":

"The transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible."—*Francis Crick, "Central Dogma, " quoted in *Richard Milner, Encyclopedia of Evolution (1990), p. 77.

The Central Dogma is an important scientific principle and means this: The complex coding within the DNA in the cell nucleus decides the traits for the organism. But what is in the body and what happens to the body cannot affect the DNA coding. What this means is this:

Species cannot change from one into another! All the members in a species (dogs, for example) can only be the outcome of the wide range of "gene pool" data in the DNA, but no member of that species can, because of the environment or what has happened to that individual, change into another species. Only changes in the DNA coding can produce such changes; nothing else can do it.

"It [the Central Dogma] has proved a fruitful principle, ever since James Watson and Crick discovered the double-helix structure of DNA in the 1950s. DNA is the blueprint; it gives instructions to the RNA and to proteins about how to arrange themselves."—*Richard Milner, Encyclopedia of Evolution (1990), ibid.

"An honest man, armed with all the knowledge available to us now, could only state that in some sense, the origin of life appears at the moment to be almost a miracle, so many are the conditions which would have had to have been satisfied to get it going."—*Francis Crick, Life Itself (1981), p. 88.

BLUE GENE—As we near press time on this paperback, announcement has been made that IBM has begun work on their largest computer to-date. It is called "Blue gene"; and it must be powerful, for they have been building ever larger supercomputers since the 1940s. This one will be 100 times more powerful than Big Blue, the computer used to defeat Kasperson in chess several years ago.

They are trying to figure out something which is so utterly complicated that no lesser computer can handle the task. No, not something simple like computing a trip to Saturn and back. Their objective is solving something far more complicated. —It is figuring out how a protein folds! (Also see p. 893 of this book for more information!)

In every cell in your body, brainless proteins assemble more proteins from amino acids. They put them into their proper sequence (!) and, then as soon as the task is ended, the new protein automatically folds down into a clump, as complicated as a piece of steel wool. IBM is trying to figure out the fold pattern instantly made by this microscopic piece of mindless, newborn protein!

The computer will cost $100 million, and Stanford University is trying to get people to let them use their home computers to help with the task (go to for details). They say they need the information to figure out drugs to counteract HIV and other viruses. So far, they can only get the protein to wiggle; they cannot get it to fold (NPR, Wednesday evening, September 27, 2000).

For more on proteins and how they do their work in the cell, go to our website,, and locate a special study on protein which we have prepared. It contains a remarkable collection of facts.

As we go to press: It has recently been discovered that the terrible plague of mad cow disease (initially brought into existence by cannibalism) is caused by eating meat containing proteins that do not fold correctly, or by being injected with raw glandulars containing them.

0 0

Post a comment